Including sample AI code snippets in your blog post can help illustrate how AI technologies work and provide practical insights for readers interested in implementation. Here are some example code snippets for each of the AI applications mentioned:
### Healthcare
#### Medical Imaging with Python and TensorFlow
```python
import tensorflow as tf
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.vgg16 import VGG16, preprocess_input, decode_predictions
# Load pre-trained VGG16 model + higher level layers
model = VGG16(weights='imagenet')
# Load an example image and preprocess it
img_path = 'path_to_medical_image.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
# Predict the class probabilities
predictions = model.predict(x)
# Decode predictions
print('Predicted:', decode_predictions(predictions, top=3)[0])
```
### Finance
#### Fraud Detection with Scikit-Learn
```python
from sklearn.ensemble import IsolationForest
import numpy as np
# Generate some sample data
X = np.random.rand(100, 2)
# Fit the model
model = IsolationForest(contamination=0.1)
model.fit(X)
# Predict anomalies
predictions = model.predict(X)
# -1 for anomalies, 1 for normal
anomalies = X[predictions == -1]
print('Anomalies detected:', anomalies)
```
### Retail
#### Recommendation Engine with Python and Pandas
```python
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
# Sample user-item matrix
data = {'user': [1, 2, 3, 4, 5],
'item1': [5, 4, 1, 0, 0],
'item2': [4, 5, 0, 1, 1],
'item3': [1, 0, 4, 5, 0]}
df = pd.DataFrame(data).set_index('user')
# Compute cosine similarity
similarity = cosine_similarity(df)
similarity_df = pd.DataFrame(similarity, index=df.index, columns=df.index)
print('User similarity matrix:\n', similarity_df)
```
### Transportation
#### Route Optimization with Google OR-Tools
```python
from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp
def create_data_model():
"""Stores the data for the problem."""
data = {}
data['distance_matrix'] = [
[0, 2, 9, 10],
[1, 0, 6, 4],
[15, 7, 0, 8],
[6, 3, 12, 0],
]
data['num_vehicles'] = 1
data['depot'] = 0
return data
def main():
data = create_data_model()
manager = pywrapcp.RoutingIndexManager(len(data['distance_matrix']), data['num_vehicles'], data['depot'])
routing = pywrapcp.RoutingModel(manager)
def distance_callback(from_index, to_index):
from_node = manager.IndexToNode(from_index)
to_node = manager.IndexToNode(to_index)
return data['distance_matrix'][from_node][to_node]
transit_callback_index = routing.RegisterTransitCallback(distance_callback)
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.first_solution_strategy = (routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)
solution = routing.SolveWithParameters(search_parameters)
if solution:
print('Objective: {} miles'.format(solution.ObjectiveValue()))
index = routing.Start(0)
plan_output = 'Route:\n'
while not routing.IsEnd(index):
plan_output += ' {} ->'.format(manager.IndexToNode(index))
index = solution.Value(routing.NextVar(index))
plan_output += ' {}\n'.format(manager.IndexToNode(index))
print(plan_output)
if __name__ == '__main__':
main()
```
### Education
#### Personalized Learning with Python and Keras
```python
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
# Sample data: student features and corresponding scores
X = np.array([[1, 2], [2, 3], [3, 4], [4, 5]])
y = np.array([5, 7, 9, 11])
# Define the model
model = Sequential()
model.add(Dense(units=1, input_dim=2, activation='linear'))
# Compile the model
model.compile(optimizer='adam', loss='mean_squared_error')
# Train the model
model.fit(X, y, epochs=100, verbose=0)
# Predict new scores
new_data = np.array([[5, 6]])
predicted_score = model.predict(new_data)
print('Predicted score:', predicted_score)
```
### Agriculture
#### Precision Farming with Python and OpenCV
```python
import cv2
import numpy as np
# Load an example image
image = cv2.imread('path_to_farm_image.jpg')
# Convert the image to grayscale
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Apply a threshold to detect areas of interest
_, thresholded_image = cv2.threshold(gray_image, 120, 255, cv2.THRESH_BINARY)
# Find contours (areas of interest)
contours, _ = cv2.findContours(thresholded_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# Draw contours on the original image
cv2.drawContours(image, contours, -1, (0, 255, 0), 3)
# Display the image with contours
cv2.imshow('Detected Areas', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
These code snippets provide a glimpse into the practical implementation of AI technologies across various industries. By including these examples, your blog post will not only inform but also inspire and empower readers to explore AI further.
No comments:
Post a Comment