Ai codes

 Including sample AI code snippets in your blog post can help illustrate how AI technologies work and provide practical insights for readers interested in implementation. Here are some example code snippets for each of the AI applications mentioned:


### Healthcare


#### Medical Imaging with Python and TensorFlow

```python

import tensorflow as tf

from tensorflow.keras.preprocessing import image

from tensorflow.keras.applications.vgg16 import VGG16, preprocess_input, decode_predictions


# Load pre-trained VGG16 model + higher level layers

model = VGG16(weights='imagenet')


# Load an example image and preprocess it

img_path = 'path_to_medical_image.jpg'

img = image.load_img(img_path, target_size=(224, 224))

x = image.img_to_array(img)

x = np.expand_dims(x, axis=0)

x = preprocess_input(x)


# Predict the class probabilities

predictions = model.predict(x)

# Decode predictions

print('Predicted:', decode_predictions(predictions, top=3)[0])

```


### Finance


#### Fraud Detection with Scikit-Learn

```python

from sklearn.ensemble import IsolationForest

import numpy as np


# Generate some sample data

X = np.random.rand(100, 2)


# Fit the model

model = IsolationForest(contamination=0.1)

model.fit(X)


# Predict anomalies

predictions = model.predict(X)

# -1 for anomalies, 1 for normal

anomalies = X[predictions == -1]

print('Anomalies detected:', anomalies)

```


### Retail


#### Recommendation Engine with Python and Pandas

```python

import pandas as pd

from sklearn.metrics.pairwise import cosine_similarity


# Sample user-item matrix

data = {'user': [1, 2, 3, 4, 5],

        'item1': [5, 4, 1, 0, 0],

        'item2': [4, 5, 0, 1, 1],

        'item3': [1, 0, 4, 5, 0]}

df = pd.DataFrame(data).set_index('user')


# Compute cosine similarity

similarity = cosine_similarity(df)

similarity_df = pd.DataFrame(similarity, index=df.index, columns=df.index)

print('User similarity matrix:\n', similarity_df)

```


### Transportation


#### Route Optimization with Google OR-Tools

```python

from ortools.constraint_solver import routing_enums_pb2

from ortools.constraint_solver import pywrapcp


def create_data_model():

    """Stores the data for the problem."""

    data = {}

    data['distance_matrix'] = [

        [0, 2, 9, 10],

        [1, 0, 6, 4],

        [15, 7, 0, 8],

        [6, 3, 12, 0],

    ]

    data['num_vehicles'] = 1

    data['depot'] = 0

    return data


def main():

    data = create_data_model()

    manager = pywrapcp.RoutingIndexManager(len(data['distance_matrix']), data['num_vehicles'], data['depot'])

    routing = pywrapcp.RoutingModel(manager)


    def distance_callback(from_index, to_index):

        from_node = manager.IndexToNode(from_index)

        to_node = manager.IndexToNode(to_index)

        return data['distance_matrix'][from_node][to_node]


    transit_callback_index = routing.RegisterTransitCallback(distance_callback)

    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)


    search_parameters = pywrapcp.DefaultRoutingSearchParameters()

    search_parameters.first_solution_strategy = (routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)


    solution = routing.SolveWithParameters(search_parameters)

    if solution:

        print('Objective: {} miles'.format(solution.ObjectiveValue()))

        index = routing.Start(0)

        plan_output = 'Route:\n'

        while not routing.IsEnd(index):

            plan_output += ' {} ->'.format(manager.IndexToNode(index))

            index = solution.Value(routing.NextVar(index))

        plan_output += ' {}\n'.format(manager.IndexToNode(index))

        print(plan_output)


if __name__ == '__main__':

    main()

```


### Education


#### Personalized Learning with Python and Keras

```python

import numpy as np

from keras.models import Sequential

from keras.layers import Dense


# Sample data: student features and corresponding scores

X = np.array([[1, 2], [2, 3], [3, 4], [4, 5]])

y = np.array([5, 7, 9, 11])


# Define the model

model = Sequential()

model.add(Dense(units=1, input_dim=2, activation='linear'))


# Compile the model

model.compile(optimizer='adam', loss='mean_squared_error')


# Train the model

model.fit(X, y, epochs=100, verbose=0)


# Predict new scores

new_data = np.array([[5, 6]])

predicted_score = model.predict(new_data)

print('Predicted score:', predicted_score)

```


### Agriculture


#### Precision Farming with Python and OpenCV

```python

import cv2

import numpy as np


# Load an example image

image = cv2.imread('path_to_farm_image.jpg')


# Convert the image to grayscale

gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)


# Apply a threshold to detect areas of interest

_, thresholded_image = cv2.threshold(gray_image, 120, 255, cv2.THRESH_BINARY)


# Find contours (areas of interest)

contours, _ = cv2.findContours(thresholded_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)


# Draw contours on the original image

cv2.drawContours(image, contours, -1, (0, 255, 0), 3)


# Display the image with contours

cv2.imshow('Detected Areas', image)

cv2.waitKey(0)

cv2.destroyAllWindows()

```


These code snippets provide a glimpse into the practical implementation of AI technologies across various industries. By including these examples, your blog post will not only inform but also inspire and empower readers to explore AI further.

No comments: